Comments on “Time-Delayed State Estimator for Linear Systems with Unknown Inputs”

Shreyas Sundaram and Christoforos N. Hadjicostis*

Abstract: A recently published paper demonstrates the utility of allowing delays in state estimators for linear systems with unknown inputs. In this note, we point out an error in the derivation of the estimator.

Keywords: Colored noise, Kalman filters, time-delayed state estimation, unknown input observers.

1. INTRODUCTION

In a recently published paper [1], Jin and Tahk consider the problem of estimating the state of the system

\[x_{k+1} = Ax_k + Bu_k + Mf_k + v_k, \]

\[y_k = Cx_k + w_k, \]

where \(x_k \) is the state vector, \(u_k \) is a known input, \(f_k \) is an unknown input, and \(v_k \) and \(w_k \) are independent zero mean white noise processes with covariance matrices \(Q_k \) and \(R_k \) respectively. Jin and Tahk propose an estimator of the form

\[
\hat{x}_{k+1} = Ax_k + Bu_k + \begin{bmatrix} K_0 & K_1 & \cdots & K_d \end{bmatrix} \begin{bmatrix} y_k - \hat{y}_k \\ y_{k+1} - \hat{y}_{k+1} \\ \vdots \\ y_{k+d} - \hat{y}_{k+d} \end{bmatrix},
\]

where \(d \) is the estimator delay, and \(\hat{y}_k = C\hat{x}_k \), \(\hat{y}_{k+1} = C\hat{x}_{k+1} + CBu_k \), and so on. It is shown in [1] that under certain conditions, the gain matrices \(K_1, K_2, \ldots, K_d \) can be chosen to decouple the estimation error from the unknown input \(f_k \). The estimation error (defined as \(e_{k+1} = x_{k+1} - \hat{x}_{k+1} \)) is then given by

\[e_{k+1} = (\overline{A} - K_0C) e_k - K_0 w_k - \overline{K} w_{k+1/1} + \overline{S} v_k, \]

where

\[\overline{A} = \begin{bmatrix} I & -K_1 & \cdots & -K_d CA^{d-2} & \cdots & C \end{bmatrix} A, \]

\[\overline{K} = \begin{bmatrix} K_1 & \cdots & K_d \end{bmatrix}, \]

\[\overline{S} = \begin{bmatrix} I & 0 & \cdots & 0 \\ CA & C & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}, \]

\[\overline{w}_k = \begin{bmatrix} w_k^T \\ \vdots \\ w_{k+d}^T \end{bmatrix}, \]

\[\overline{w}_{k+1/1} = \begin{bmatrix} w_{k+1}^T \\ \vdots \\ w_{k+d+1}^T \end{bmatrix}, \]

\[\overline{v}_k = \begin{bmatrix} v_k^T \\ \vdots \\ v_{k+d-1}^T \end{bmatrix}. \]

Based on this expression, the estimation error covariance matrix (defined as \(P_{k+1} = E\{ e_{k+1} e_{k+1}^T \} \)) is specified in equation (15) of [1] to be

\[
P_{k+1} = \overline{A} P_k \overline{A} + K_0 \overline{R}_k K_0^T + \overline{S} \overline{Q} \overline{S}^T.
\]

The above expression for the estimation error covariance matrix is incorrect since it neglects the correlation between \(e_k \) and the noise vectors \(\overline{w}_k \).
and \(\tilde{v}_k \). This implies that the subsequent equations in [1] for the optimal filter gains are also erroneous. The correlation exists because the delays in the estimator force \(e_k \) to become a function of multiple time-samples of the noise processes \(w_k \) and \(v_k \). In other words, the noise becomes colored from the perspective of the error. This situation also arises when constructing zero-delay estimators for systems where the unknown inputs affect the output equation, and was studied by Darouach et al. in [2]. The proper expression for the error covariance matrix can be obtained by using Kalman filtering equations for colored noise as described in [2] and [3].

REFERENCES

