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I. Introduction1)

Lots of control methodologies have been proposed to
control a lot of kind of plants. One of the methods is to
make a model of the plant under consideration and then
design a control system for the model to be stable. In the
actual cases, however, there exists a modelling error. In
addition, it is very difficult to measure the actual parameter
of the plant exactly. Thus, the model has the uncertainties
in its parameters and/or structure.

It has been known that the Sliding Mode Control has
robust and invariant property to parameter uncertainties and
external disturbances. The sliding mode control is designed
for the system state to be forced to stay on the
predetermined sliding surface. When the system is in the
sliding mode, the overall system shows the invariance
property to parameter variations and external disturbances,
and the dynamics of the closed-loop system is determined
by the prescribed sliding surface. Almost all of previous
works of sliding mode control have been studied in the
continuous-time domain [1]-[3].

In the actual systems, however, controllers are
implemented in the discrete-time domain since they use
microprocessors or computers in general. And it is well
known that the control system designed in the
continuous-time domain may become unstable after
sampling.

Recently, a sliding mode control in the discrete-time
domain has attracted the attention [4]-[7]. Generally
speaking, lots of previous works have used discretized
version of continuous-time design schemes for the systems
with no uncertainty or disturbance: reaching condition [4],

s( t) s( t ) <0, i.e.,

|s( k + 1)| < |s( k )| ,

or Lyapunov approach [5], V ( t) < 0, where

V ( t ) = 1
2 s 2( t ) , i.e.,

V ( k + 1) - V ( k ) < 0,

where V ( k ) = 1
2 s 2( k ) . Under the existence of uncertainties
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and disturbances, however, the discrete- time sliding mode
control does not guarantee the invariant property.
Furthermore, it does not assure the asymptotic convergence
of the system state, either.

Thus, in this paper, a discrete-time sliding mode control
for linear time-varying systems is proposed. The proposed
method guarantees that the system state is globally
uniformly ultimately bounded (G.U.U.B.) under the
existence of time-varying disturbance and uncertainty. It is
also shown that the closed-loop system is globally
asymptotically stable if the disturbance and uncertainty is
time-invariant.

II. Problem formulation
Consider a discrete-time linear time-varying plant of the

following form:

x ( k + 1) = A ( k)x ( k ) + B u ( k ) + d ( k ), (1)

where k = 0, 1, 2, , x ( ) R n is the state vector,

u ( ) R is the scalar input, and d ( ) R n is the vector
of external disturbances. The index k indicates the k -th

sample, A ( ) R n n is the linear time-varying system
matrix, B is the input matrix of appropriate dimension, and
it's assumed that the matching condition is satisfied. For the
vector of disturbance, it is also assumed that d i ( t) L ,

d i ( t) L , and there exists a constant vector D R n

such that

| d i( k + 1) - d i( k ) | D i

where d i( k ) means d i( kT ) , T is a sampling period, and

i = 1, 2, , n .

III. Main res ults
Let the sliding surface as

s( k ) = Cx ( k ), (2)

where C T R n is assumed to be designed such that CB

is nonsingular and the following sliding dynamics is
globally uniformly asymptotically stable:

s( k ) 0. (3)

From (1), the nominal system can be written as
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x ( k + 1) = A ( k )x ( k ) + B u ( k), (4)
where k = 0, 1, 2, . For the above system, the sliding
dynamics (3) can be rewritten as

s( k + 1) = Cx ( k + 1) = CA ( k )x ( k ) + CB u ( k )
= s( k ) = Cx ( k ) = 0,

(5)

where k = 0, 1, 2, . From the above equation, the
equivalent control input can be obtained as

u eq = - ( CB ) - 1 CA ( k )x ( k ) . (6)

For the nominal system, therefore, the dynamics in the
sliding mode can be expressed as

x ( k + 1) = A ( k) x ( k ) + B u eq( k)
= [ ( I - B ( CB ) - 1C )A ( k ) ] x ( k ).

(7)

Thus, it's equivalent to say that $C$ is assumed to be
chosen such that the above sliding dynamics turns to be
stable.

Then, the following theorem can be derived for the
closed-loop system.

Theorem 1: For the discrete-time linear time- varying
system (1) with the proposed controller (8), it is guaranteed
that the system state is globally uniformly ultimately
bounded(G.U.U.B.):

u ( k ) = u ( k - 1) + ( CB ) - 1 [ ( - 1) s( k )
- C {A ( k )x ( k ) - A ( k - 1)x ( k - 1)}],

(8)

where is arbitrarily chosen such that s( k + 1) = s( k ) is
asymptotically stable, i.e., | | < 1.

P roof: Since the system under consideration is in the
discrete-time domain, one can compute the delayed
unknown external disturbance, d ( k - 1) .

From the equation of the plant (1), x ( k ) can be obtained
as

x( k) = A ( k - 1)x ( k - 1) + B u ( k - 1) + d ( k - 1).

Thus, the delayed unknown disturbance, d ( k - 1) , is

d ( k - 1) = x ( k ) - A ( k - 1)x ( k - 1) - B u ( k - 1). (9)

Then, s( k + 1) can be computed as follows:

s( k + 1) = Cx ( k + 1)
= CA ( k )x( k ) + CB u ( k ) + Cd ( k )
= CA ( k )x( k ) + CB u ( k ) + Cd ( k )

- Cd ( k - 1) + Cd ( k - 1)
= CA ( k )x( k ) + CB u ( k ) + Cd ( k )

- Cd ( k - 1) + Cx ( k )
- CA ( k - 1)x ( k - 1) - CB u ( k - 1)

= CB u ( k ) - CB u ( k - 1) + CA ( k )x ( k )
- CA ( k - 1)x ( k - 1) + s( k)
+ C {d ( k) - d ( k - 1)}.

(10)

Applying the proposed discrete-time sliding mode control
(8) to the above equation, the following equation can be
derived:

s( k + 1) = s( k ) + C {d ( k ) - d ( k - 1)}. (11)

Since < 1, it is clear that

lim
k

|s( k )| 1
1- | |

n

i = 1
|C i |D i . (12)

Thus, the system state x ( k ) is globally uniformly
ultimately bounded(G.U.U.B.) since C is chosen such that
s( k ) = Cx ( k ) 0 is asymptotically stable.

Remark 1: It is easy to know that the following
delayed/past control input, u ( k - 1) , is used to cancel out
the unknown disturbance d ( k ) approximately.

u ( k - 1) = ( CB ) - 1 [ s( k ) - CA ( k - 1) x ( k - 1)
- C d ( k - 1)].

For the simple second-order systems with canonical form,
the following Corollary can be derived for the bound of the
system state.

Corolla ry 1: For the second-order systems of the
canonical form, i.e., x 1( k + 1) = x 2( k ) , if the sliding surface

is defined as

s( k ) = C x ( k ) = c 1x 1( k ) + c 2x 2( k) = c 1x 1( k ) + x 2( k ) ,

where | c 1 | <1, then the ultimate bound of x 1( k ) can be

found as the following:

lim
k

|x 1( k ) | 1
1- | c 1 | ( 1

1- | |

n

i = 1
|C i |D i ). (13)

Proof: Since it is obvious from Eq. (12), the proof is
omitted.

Corolla ry 2: From (12), it is easily known that the
closed-loop system is globally uniformly asymptotically
stable if the disturbances are time- invariant, that is, d ( )

is a constant vector, i.e.,

D = 0 .

It implies that there is no need for the disturbance to be
zero for the asymptotic stability.

Proof: Since it is clear, the proof is omitted.
Remark 2: The proposed method uses the bound of the

variation/difference of the disturbance,

D i | d i( k + 1) - d i( k ) |,

where k = 0, 1, 2, . It is clear that | | D || decreases as
the sampling frequency increases. Thus, how large the
bound of disturbance || D | | is, the magnitude of the ultimate
bound of the state x ( k ) can be made very small if the
disturbance d ( k ) varies slowly or the sampling period is set
very short.

IV. Simulation res ults
Consider the following discrete-time system matrices

which is similar to that of Myszkorowski [8]:

A ( k ) = [ ]0 1
a 21( k ) 0. 2

, B = [ ]0
1

, d ( k) = [ ]0
d 2( k )

,

where a 21( k ) = 0. 05 cos ( 0. 1 k ) + 0. 24, and d 2( k ) =

0. 05 cos ( 0. 1 k ) + 0. 05 s in ( 0. 05 k ) .
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The gains for the control system are chosen as
C = [ ]0. 8 1 and = 0. 8.

As can be seen in Figs. 1 and 2, x 1( k ) and s( k ) are

ultimately bounded under the existence of the time-varying
uncertainty and disturbance, d ( k ) .

Figure 3 shows the control input profile of the proposed
controller.

From (12) and (13), it is expected that the bound of the
system state in the steady-state increases when | |

Fig. 1. System state(x1) for =0.8.

Fig. 2. Sliding surface for =0.8.

Fig. 3. Control input for =0.8.

decreases. Figs. 4 and 5 show the x 1( k ) and s( k ) when

= 0. 2. By comparing these figures with Figs. 1 and 2,
one can see the effect of the variation of , that is, the
ultimate bounds are smaller than those of Fig. 1 and 2. And
the control signal for this case is shown in Fig. 6.

Fig. 4. System state(x1) for =0.2.

Fig. 5. Sliding surface for =0.2.

Fig. 6. Control input for =0.2.

V. Conclus ions
In this paper, a discrete-time sliding mode controller for
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linear time-varying systems with time-varying disturbances
has been presented. It has been shown that the system state
is globally uniformly ultimately bounded (G.U.U.B.) under
the existence of time- varying disturbance and uncertainty.
Moreover, it has been known that although the magnitude of
the bound of disturbance and uncertainty is large, the
magnitude of the ultimate bound can be set very small by
increasing the sampling frequency.
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