Regular Papers

Transaction on Control Automation, and Systems Engineering 2001; 3(4): 283-288

© The International Journal of Control, Automation, and Systems

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

Min-hyuk Chang/Mi-Suk Oh/Chun-Whan Lim/ Muhammad Bilal Ahmad/Jong-An Park

Abstract

In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion fo llowed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wavelet transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. Other facial features are obtained from edge information of the image. The characteristic vectors are extracted from DWT of the segmented face image. These characteristic vectors are normalized between +1 and –1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100 % on the learned system, and about 92% on the test images.

Keywords mask, differential image, discrete wavelet trans form, neural network, face recognition

Article

Regular Papers

Transaction on Control Automation, and Systems Engineering 2001; 3(4): 283-288

Published online December 1, 2001

Copyright © The International Journal of Control, Automation, and Systems.

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

Min-hyuk Chang/Mi-Suk Oh/Chun-Whan Lim/ Muhammad Bilal Ahmad/Jong-An Park

Abstract

In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion fo llowed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wavelet transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. Other facial features are obtained from edge information of the image. The characteristic vectors are extracted from DWT of the segmented face image. These characteristic vectors are normalized between +1 and –1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100 % on the learned system, and about 92% on the test images.

Keywords: mask, differential image, discrete wavelet trans form, neural network, face recognition

IJCAS
March 2025

Vol. 23, No. 3, pp. 683~972

Stats or Metrics

Share this article on

  • line

Related articles in IJCAS

IJCAS

eISSN 2005-4092
pISSN 1598-6446