International Journal of Control, Automation and Systems 2018; 16(1): 27-38
Published online March 2, 2018
https://doi.org/10.1007/s12555-016-0721-3
© The International Journal of Control, Automation, and Systems
This paper proposes a novel adaptive control criterion for a class of single-input-single-output (SISO) uncertain nonlinear systems by using extended neural networks (ENNs). Distinguished from the traditional neural networks, our ENNs are composed of radial basis function neural networks (RBFNNs), scalers and saturators. And these ENNs are used to approximate the uncertainties in the nonlinear systems. Based on the Lyapunov stability theory and our ENNs, an adaptive control scheme is designed to guarantee that all the signals in the closed-loop system are uniformly ultimately bounded (UUB). It is also worth pointing out that our control method makes the construction of RBFNNs and the design of adaptive laws separated, which means only the outputs of ENNs and one update law of the parameter in the scaler are to be adjusted. Thus, our control scheme can effectively reduce the online computation burden of the adaptive parameters. Finally, simulation examples are given to verify the effectiveness of our theoretical result."
Keywords Adaptive control, extended neural networks (ENNs), scaler, saturator, uniformly ultimately bounded (UUB).
International Journal of Control, Automation and Systems 2018; 16(1): 27-38
Published online February 1, 2018 https://doi.org/10.1007/s12555-016-0721-3
Copyright © The International Journal of Control, Automation, and Systems.
Hao-guang Chen*, Yin-he Wang, and Li-li Zhang
Guangdong University of Technology
This paper proposes a novel adaptive control criterion for a class of single-input-single-output (SISO) uncertain nonlinear systems by using extended neural networks (ENNs). Distinguished from the traditional neural networks, our ENNs are composed of radial basis function neural networks (RBFNNs), scalers and saturators. And these ENNs are used to approximate the uncertainties in the nonlinear systems. Based on the Lyapunov stability theory and our ENNs, an adaptive control scheme is designed to guarantee that all the signals in the closed-loop system are uniformly ultimately bounded (UUB). It is also worth pointing out that our control method makes the construction of RBFNNs and the design of adaptive laws separated, which means only the outputs of ENNs and one update law of the parameter in the scaler are to be adjusted. Thus, our control scheme can effectively reduce the online computation burden of the adaptive parameters. Finally, simulation examples are given to verify the effectiveness of our theoretical result."
Keywords: Adaptive control, extended neural networks (ENNs), scaler, saturator, uniformly ultimately bounded (UUB).
Vol. 22, No. 12, pp. 3545~3811
Xin Liu* and Pinle Qin
International Journal of Control, Automation, and Systems 2024; 22(11): 3509-3524Sergio Alvarez-Rodríguez, Mohammed Taleb, and Francisco G. Peña-Lecona*
International Journal of Control, Automation, and Systems 2024; 22(11): 3409-3423An-Chyau Huang*, Chih-Hao Chang, and Chi-Fu Chang
International Journal of Control, Automation, and Systems 2024; 22(10): 3147-3156