International Journal of Control, Automation and Systems 2018; 16(5): 2103-2113
Published online July 25, 2018
https://doi.org/10.1007/s12555-017-0689-7
© The International Journal of Control, Automation, and Systems
This paper tackles the problem of integrated translation and rotation stabilization of the spacecraft in proximity operations by proposing a novel manipulator actuation strategy. To do so, by theoretically integrating the attitude/position motion of the spacecraft and the joint motion of the manipulator, a coupled translational and rotational kinematics of the spacecraft with a single space manipulator mounted is formulated, where system unknown parameters and residual system momentum are taken into account and analyzed. Taking the joint motion as the control input, a projection-based adaptive control scheme is then developed such that the translation and rotation of the spacecraft can be robustly stabilized with the manipulator-based actuation. The closed-loop asymptotic stability is guaranteed within Lyapunov framework. Meanwhile, considering the constrained joint motion of the manipulator, the resulting control constraint issue is handled by developing an optimization based bound analysis method, which also facilitates the determination of control parameters. Two scenario numerical simulations demonstrate the effect of the designed control scheme."
Keywords Adaptive control, control constraint, integrated translation and rotation control, proximity operations, space manipulator.
International Journal of Control, Automation and Systems 2018; 16(5): 2103-2113
Published online October 1, 2018 https://doi.org/10.1007/s12555-017-0689-7
Copyright © The International Journal of Control, Automation, and Systems.
Feng Zhang* and Guang-Ren Duan
China Academy of Launch Vehicle Technology
This paper tackles the problem of integrated translation and rotation stabilization of the spacecraft in proximity operations by proposing a novel manipulator actuation strategy. To do so, by theoretically integrating the attitude/position motion of the spacecraft and the joint motion of the manipulator, a coupled translational and rotational kinematics of the spacecraft with a single space manipulator mounted is formulated, where system unknown parameters and residual system momentum are taken into account and analyzed. Taking the joint motion as the control input, a projection-based adaptive control scheme is then developed such that the translation and rotation of the spacecraft can be robustly stabilized with the manipulator-based actuation. The closed-loop asymptotic stability is guaranteed within Lyapunov framework. Meanwhile, considering the constrained joint motion of the manipulator, the resulting control constraint issue is handled by developing an optimization based bound analysis method, which also facilitates the determination of control parameters. Two scenario numerical simulations demonstrate the effect of the designed control scheme."
Keywords: Adaptive control, control constraint, integrated translation and rotation control, proximity operations, space manipulator.
Vol. 23, No. 3, pp. 683~972
Changhui Wang*, Yihao Wang, and Mei Liang*
International Journal of Control, Automation, and Systems 2025; 23(3): 945-959Nigar Ahmed, Meng Joo Er*, and Syed Awais Ali Shah
International Journal of Control, Automation, and Systems 2025; 23(3): 860-868Yue Wang, Yong-Hui Yang*, and Li-Bing Wu
International Journal of Control, Automation, and Systems 2025; 23(1): 175-186