International Journal of Control, Automation and Systems 2021; 19(1): 172-185
Published online August 5, 2020
https://doi.org/10.1007/s12555-019-0487-5
© The International Journal of Control, Automation, and Systems
This article investigates the problem of attitude tracking control for spacecraft with limited communication, unknown system parameters, and external disturbances. An adaptive control scheme with an event-triggered mechanism (ETM) is proposed to alleviate the communication burden. Radial Basis Function Neural Network (RBFNN) estimation model is developed to provide the input signals for the control module in this control scheme. Estimated attitude information of the spacecraft generated from the estimation model will only be transmitted to the control module at the instants when the ETM is violated. The neural network (NN) and the estimation model will be updated complying with an adaptive algorithm at the discrete triggering instants. It’s substantiated that all the errors of attitude tracking converge towards corresponding residuals and there are no accumulated triggering instants. Numerical simulation also demonstrates the effectiveness of the proposed control method.
Keywords Attitude tracking, event-triggered control (ETC), impulsive dynamics system, limited communication, neural networks
International Journal of Control, Automation and Systems 2021; 19(1): 172-185
Published online January 1, 2021 https://doi.org/10.1007/s12555-019-0487-5
Copyright © The International Journal of Control, Automation, and Systems.
Hongyi Xie, Baolin Wu*, and Weixing Liu
Harbin Institute of technology
This article investigates the problem of attitude tracking control for spacecraft with limited communication, unknown system parameters, and external disturbances. An adaptive control scheme with an event-triggered mechanism (ETM) is proposed to alleviate the communication burden. Radial Basis Function Neural Network (RBFNN) estimation model is developed to provide the input signals for the control module in this control scheme. Estimated attitude information of the spacecraft generated from the estimation model will only be transmitted to the control module at the instants when the ETM is violated. The neural network (NN) and the estimation model will be updated complying with an adaptive algorithm at the discrete triggering instants. It’s substantiated that all the errors of attitude tracking converge towards corresponding residuals and there are no accumulated triggering instants. Numerical simulation also demonstrates the effectiveness of the proposed control method.
Keywords: Attitude tracking, event-triggered control (ETC), impulsive dynamics system, limited communication, neural networks
Vol. 22, No. 9, pp. 2673~2953
Tian Xu* and Yuxiang Wu
International Journal of Control, Automation, and Systems 2024; 22(7): 2108-2121Yaqi Li, Yun Chen*, and Shuangcheng Sun
International Journal of Control, Automation, and Systems 2024; 22(3): 927-935Xiaoxuan Pei, Kewen Li, and Yongming Li*
International Journal of Control, Automation, and Systems 2024; 22(2): 581-592