International Journal of Control, Automation and Systems 2022; 20(7): 2159-2168
Published online June 9, 2022
https://doi.org/10.1007/s12555-021-0206-x
© The International Journal of Control, Automation, and Systems
The fractional-order proportional-integral-derivative (FOPID) controller is an improvement over the traditional PID controller. However, most existing methods of FOPID controller design are complex and not suitable for practical application. This paper presents a simple and efficient design method of FOPID controllers for fractional-order controlled plants with time delays. The method is based on four frequency-domain specifications—namely, gain crossover frequency, phase margin, phase crossover frequency and gain margin. The implicit nonlinear equations related to the controller parameters are formulated using these specifications. To simplify the mathematical calculation, the explicit equations of the controller parameters are analytically derived. Then, the FOPID controller parameters can be adjusted in a graphical manner. Two fractional-order plus time-delay plants are considered as simulation examples. The results show that the design requirements are successfully met and superior control performance is obtained via the proposed tuning method.
Keywords FOPID controller, fractional-order systems, frequency-domain specifications, time delay.
International Journal of Control, Automation and Systems 2022; 20(7): 2159-2168
Published online July 1, 2022 https://doi.org/10.1007/s12555-021-0206-x
Copyright © The International Journal of Control, Automation, and Systems.
Xu Li* and Lifu Gao
Chinese Academy of Sciences
The fractional-order proportional-integral-derivative (FOPID) controller is an improvement over the traditional PID controller. However, most existing methods of FOPID controller design are complex and not suitable for practical application. This paper presents a simple and efficient design method of FOPID controllers for fractional-order controlled plants with time delays. The method is based on four frequency-domain specifications—namely, gain crossover frequency, phase margin, phase crossover frequency and gain margin. The implicit nonlinear equations related to the controller parameters are formulated using these specifications. To simplify the mathematical calculation, the explicit equations of the controller parameters are analytically derived. Then, the FOPID controller parameters can be adjusted in a graphical manner. Two fractional-order plus time-delay plants are considered as simulation examples. The results show that the design requirements are successfully met and superior control performance is obtained via the proposed tuning method.
Keywords: FOPID controller, fractional-order systems, frequency-domain specifications, time delay.
Vol. 22, No. 12, pp. 3545~3811
Hoang Huy Vu, Quyen Ngoc Nguyen, Minh Hoang Trinh, and Tuynh Van Pham*
International Journal of Control, Automation, and Systems 2024; 22(9): 2783-2791Daixi Liao*, Shouming Zhong, Jun Cheng, Kaibo Shi, Shaohua Long, and Can Zhao
International Journal of Control, Automation, and Systems 2024; 22(5): 1537-1544Yang Cao and Jian Guo*
International Journal of Control, Automation, and Systems 2024; 22(2): 460-474