Regular Papers

International Journal of Control, Automation and Systems 2006; 4(4): 405-413

© The International Journal of Control, Automation, and Systems

Global Minimum-Jerk Trajectory Planning of Space Manipulator

Panfeng Huang, Yangsheng Xu, and Bin Liang

Northwestern Polytechnical University, China

Abstract

A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

Keywords Genetic algorithms, minimum jerk, space manipulator, trajectory planning.

Article

Regular Papers

International Journal of Control, Automation and Systems 2006; 4(4): 405-413

Published online August 1, 2006

Copyright © The International Journal of Control, Automation, and Systems.

Global Minimum-Jerk Trajectory Planning of Space Manipulator

Panfeng Huang, Yangsheng Xu, and Bin Liang

Northwestern Polytechnical University, China

Abstract

A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

Keywords: Genetic algorithms, minimum jerk, space manipulator, trajectory planning.

IJCAS
January 2025

Vol. 23, No. 1, pp. 1~88

Stats or Metrics

Share this article on

  • line

Related articles in IJCAS

IJCAS

eISSN 2005-4092
pISSN 1598-6446