Transaction on Control Automation, and Systems Engineering 2000; 2(3): 169-174
© The International Journal of Control, Automation, and Systems
In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.
Keywords wavelet network, neural network
Transaction on Control Automation, and Systems Engineering 2000; 2(3): 169-174
Published online September 1, 2000
Copyright © The International Journal of Control, Automation, and Systems.
Sokho Chang/Seok Won Lee/Boo Hee Nam
In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.
Keywords: wavelet network, neural network
Vol. 23, No. 3, pp. 683~972
Akos Odry*, Istvan Kecskes, Richard Pesti, Dominik Csik, Massimo Stefanoni, Jozsef Sarosi, and Peter Sarcevic
International Journal of Control, Automation, and Systems 2025; 23(3): 920-934Yundong Kim, Jirou Feng, Taeyeon Kim, Gibeom Park, Kyungmin Lee, and Seulki Kyeong*
International Journal of Control, Automation, and Systems 2025; 23(2): 459-466Youngmin Yoon and Ara Jo*
International Journal of Control, Automation, and Systems 2025; 23(1): 126-136