Regular Papers

International Journal of Control, Automation, and Systems 2024; 22(6): 1971-1984

https://doi.org/10.1007/s12555-023-0350-6

© The International Journal of Control, Automation, and Systems

Optimized Proportional-derivative Feedback-assisted Iterative Learning Control for Manipulator Trajectory Tracking

Dong Yan, Liping Chen, Jianwan Ding*, Ziyao Xiong, and Yu Chen

Huazhong University of Science and Technology

Abstract

Iterative learning control (ILC) is a popular scheme in the trajectory tracking of manipulators, greatly improving tracking accuracy despite often requiring multiple iterations over identical trajectories. This research introduces an optimization technique for ILC parameters, enhanced with proportional-derivative (PD) feedback control, which aims to significantly reduce tracking errors within a single iteration. In the proposed approach, a PD feedback controller is utilized in the first run, collecting error data. An ILC controller is then incorporated in the second run to minimize the tracking error. Utilizing the dynamic model of the system, the transcription method transforms the continuous-form optimization problem concerning the ILC parameters into a discrete form, enabling its solution via standard numerical optimization algorithms. To demonstrate the effectiveness of the proposed approach in reducing tracking errors, we compared the tracking errors for the first and second runs of the system using frequency-domain analysis and conducted simulations and experiments on two different trajectory types.

Keywords ILC, manipulator, optimization method, PD control, transcription method.

Article

Regular Papers

International Journal of Control, Automation, and Systems 2024; 22(6): 1971-1984

Published online June 1, 2024 https://doi.org/10.1007/s12555-023-0350-6

Copyright © The International Journal of Control, Automation, and Systems.

Optimized Proportional-derivative Feedback-assisted Iterative Learning Control for Manipulator Trajectory Tracking

Dong Yan, Liping Chen, Jianwan Ding*, Ziyao Xiong, and Yu Chen

Huazhong University of Science and Technology

Abstract

Iterative learning control (ILC) is a popular scheme in the trajectory tracking of manipulators, greatly improving tracking accuracy despite often requiring multiple iterations over identical trajectories. This research introduces an optimization technique for ILC parameters, enhanced with proportional-derivative (PD) feedback control, which aims to significantly reduce tracking errors within a single iteration. In the proposed approach, a PD feedback controller is utilized in the first run, collecting error data. An ILC controller is then incorporated in the second run to minimize the tracking error. Utilizing the dynamic model of the system, the transcription method transforms the continuous-form optimization problem concerning the ILC parameters into a discrete form, enabling its solution via standard numerical optimization algorithms. To demonstrate the effectiveness of the proposed approach in reducing tracking errors, we compared the tracking errors for the first and second runs of the system using frequency-domain analysis and conducted simulations and experiments on two different trajectory types.

Keywords: ILC, manipulator, optimization method, PD control, transcription method.

IJCAS
March 2025

Vol. 23, No. 3, pp. 683~972

Stats or Metrics

Share this article on

  • line

Related articles in IJCAS

IJCAS

eISSN 2005-4092
pISSN 1598-6446